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The discrete tomography of mathematical quasicrystals with icosahedral

symmetry is investigated, placing emphasis on reconstruction and uniqueness

problems. The work is motivated by the requirement in materials science for the

unique reconstruction of the structures of icosahedral quasicrystals from a small

number of images produced by quantitative high-resolution transmission

electron microscopy.

1. Introduction

Discrete tomography (DT) is concerned with the inverse

problem of retrieving information about some finite object

from (generally noisy) information about its slices; see the

book by Herman & Kuba (1999). A typical example is the

reconstruction of a finite point set in Euclidean 3-space from

its line sums in a small number of coplanar directions [see

Fishburn et al. (1997), Gardner & Gritzmann (1999) and

Gardner et al. (1999)]. More precisely, a (discrete parallel) X-

ray of a finite subset of R3 in direction u is the corresponding

line sum function, i.e. it gives the number of points of the set

on each line in R3 parallel to u. This concept should not be

confused with X-rays in diffraction theory, which provide

rather different information on the underlying structure that is

based on statistical pair correlations [see Cowley (1995),

Fewster (2003) and Guinier (1994)]. The interest in the DT of

aperiodic model sets is mainly motivated by the requirement in

materials science for the unique reconstruction of quasicrys-

tals from their images under quantitative high-resolution

transmission electron microscopy (HRTEM) in a small

number of high-density directions, i.e. directions that yield

densely occupied lines in the quasicrystalline structure. For a

gentle introduction to the DT of aperiodic model sets

including an extended bibliography, we refer the reader to

Baake, Gritzmann, Huck et al. (2006).

In the present paper, we consider icosahedral model sets in

3-space, which are commonly regarded as good mathematical

models for many icosahedral quasicrystals in nature like the

aluminium alloys AlMn and AlCuFe; see de Boissieu et al.

(1994) for further examples. It will be crucial for our approach

that generic icosahedral model sets can be sliced into certain

planar cyclotomic model sets (Proposition 3.11), whose DT we

have studied earlier [see Baake, Gritzmann, Huck et al. (2006)

and Huck (2007a,b)].

Using the above slicing and the results from Baake, Gritz-

mann, Huck et al. (2006), it was shown in Huck (2007b) that

the algorithmic problem of reconstructing finite subsets of

generic icosahedral model sets � with polyhedral windows

given X-rays in two nonparallel �-directions that are parallel

to the slices can be solved in polynomial time in the real

random access machine (RAM) model of computation

(Theorem 4.3). Here, a �-direction is parallel to a nonzero

interpoint vector of �. Since this reconstruction problem can

possess rather different solutions, we also study the uniqueness

problem of finding a small number of suitably prescribed

�-directions that eliminate these non-uniqueness

phenomena [see Gardner & Gritzmann (1997, 1999), Fishburn

et al. (1991) and Fishburn & Shepp (1999)]. More precisely, a

subset E of the set of all finite subsets of a fixed icosahedral

model set � is said to be determined by the X-rays in a finite

set U of directions if different sets in E cannot have the same

X-rays in the directions of U. Since any fixed finite

number of X-rays in �-directions is insufficient to determine

the entire class of finite subsets of a fixed icosahedral model

set � by Proposition 5.1, it is necessary to impose some

restriction in order to obtain positive uniqueness results. For

our main uniqueness result, we consider the natural class of

convex subsets of a fixed icosahedral model set �. They are

bounded sets C � � whose convex hulls contain no new

points of �. Here, by using the above slicing and the results

from Huck (2007a,b), it is shown that there are four

pairwise nonparallel �-directions that are parallel to the slices

such that the set of convex subsets of any icosahedral model

set � are determined by their X-rays in these directions

(Theorem 5.8). In fact, it turns out that one can even choose

four �-directions which provide uniqueness and yield

dense lines in icosahedral model sets, the latter making this

result look promising in view of real applications (Example 5.9

and Remark 5.10). Finally, we demonstrate that, in an

approximate sense, the last result extends to the far more

general and relevant situation, where one deals with a whole

family of generic icosahedral model sets at the same
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time, rather than dealing with a single fixed icosahedral model

set.

2. Preliminaries and notation

We denote the norm in Euclidean d-space Rd by �
w w

. The unit

sphere in R
d is denoted by S

d�1, i.e. S
d�1
¼

fx 2 Rd
j x
w w

¼ 1g. Moreover, the elements of Sd�1 are also

called directions. For r> 0 and x 2 Rd, BrðxÞ is the open ball of

radius r about x. Recall that a homothety h : Rd
! Rd is

given by x 7! �xþ t, where � 2 R is positive and t 2 Rd. For a

subset S � Rd, k 2 N and R> 0, we denote by card(S), FðSÞ,

F�kðSÞ, int(S), cl(S), bd(S), conv(S) and 1S the cardinality, the

set of finite subsets, the set of finite subsets of S having

cardinality less than or equal to k, the interior, the closure, the

boundary, the convex hull and the characteristic function of S,

respectively. The centroid of an element F 2 FðRd
Þ is defined

as ð
P

x2F xÞ=cardðFÞ. A direction u 2 Sd�1 is called an S-

direction if it is parallel to a nonzero element of the difference

set S� S of S. Throughout this text, elements of Rd will be

written as row vectors. For a nonzero element v of Rd, we

denote by v? the hyperplane in Rd orthogonal to v.

Definition 2.1. Let d 2 N and let F 2 FðRd
Þ. Furthermore, let

u 2 Sd�1 be a direction and let Ld
u be the set of lines in

direction u in Rd. Then, the (discrete parallel) X-ray of F in

direction u is the function XuF : Ld
u ! N0 :¼ N [ f0g, defined

by

XuFð‘Þ :¼ cardðF \ ‘ Þ ¼
P
x2‘

1FðxÞ:

Moreover, the support ðXuFÞ
�1
ðNÞ of XuF, i.e. the set of lines

in Ld
u which pass through at least one point of F, is denoted by

suppðXuFÞ. For S � Rd, we denote by LS
u the subset of Ld

u

consisting of lines in Ld
u which pass through at least one point

of S.

Lemma 2.2. [Lemmas 5.1 and 5.4 of Gardner & Gritzmann

(1997).] Let d 2 N and let u 2 Sd�1 be a direction. For all

F; ~FF 2 FðRd
Þ, one has:

(a) XuF ¼ Xu
~FF implies cardðFÞ ¼ cardð ~FFÞ;

(b) If XuF ¼ Xu
~FF, the centroids of F and ~FF lie on the

same line parallel to u.

Definition 2.3. Let d � 2, let U � Sd�1 be a finite set of pair-

wise nonparallel directions, and let F 2 FðRd
Þ. We define the

grid of F with respect to the X-rays in the directions of U as

GF
U :¼

\
u2U

� [
‘2suppðXuFÞ

‘
�
:

We refer the reader to Fig. 5 of Baake, Gritzmann, Huck et

al. (2006) and Figs. 3 and 4 of Huck (2008) for illustrations of

grids of planar finite sets with respect to two X-rays in

nonparallel directions. The following property follows imme-

diately from the definition of grids.

Lemma 2.4. Let d � 2. If U � Sd�1 is a finite set of pairwise

nonparallel directions, then for all F; ~FF 2 FðRd
Þ, one has

ðXuF ¼ Xu
~FF 8u 2 UÞ ¼)F; ~FF � GF

U ¼ G
~FF
U :

Definition 2.5. Let d � 2, let E � FðRd
Þ, and let m 2 N.

Further, let U � Sd�1 be a finite set of directions. We say that

E is determined by the X-rays in the directions of U if, for all

F; ~FF 2 E, one has

ðXuF ¼ Xu
~FF 8u 2 UÞ ¼)F ¼ ~FF:

Definition 2.6. Let d 2 N and let S � Rd. A bounded subset C

of S is called a convex subset of S if it satisfies the equation

C ¼ convðCÞ \ S. Moreover, the set of all convex subsets of S

is denoted by CðSÞ.

3. Icosahedral versus cyclotomic model sets

We shall always denote the golden ratio by �, i.e.

� ¼ ½1þ ð5Þ1=2
�=2. Moreover, by :0 we will denote the unique

nontrivial Galois automorphism of the real quadratic number

fieldQð�Þ ¼ Qð51=2Þ ¼ Q�Q� (determined by 51=2 7!�51=2),

whence �0 ¼ �1=� ¼ 1� �. Note that � is an algebraic integer

of degree 2 over Q (a root of X2 � X � 1 2 Z½X�). Moreover,

Z½�� ¼ Z� Z� is the ring of integers in Qð�Þ; cf. Hardy &

Wright (1979).

Consider the following scaled (by 1
2) versions of the standard

body-centred and face-centred icosahedral modulesMB and

MF of quasicrystallography, defined as

LB :¼ Z½��ð0; 1; 0Þ � Z½��12ð�1;��0; �Þ � Z½��12ð1; 1; 1Þ

and

LF :¼ ¼ Z½��ð0; 1; 0Þ � Z½�� 12 ð�1;��0; �Þ � Z½��ð1; 0; 0Þ;

respectively; cf. Baake (1997) and Baake, Pleasants &

Rehmann (2006), and references therein. The icosahedral

modules are well known objects to crystallographers, as they

appear in the indexing of Bragg peaks in icosahedral struc-

tures. For the connection with the icosian ring, see Chen et al.

(1998), Moody (2000) and Moody & Patera (1993). Obviously,

both LB and its subgroup LF (of index 4) are free Z½��-
modules of rank 3, and are hence free Z-modules of rank 6.

Moreover, both modules have icosahedral symmetry, i.e. they

are invariant under the action of the group Yh of 120

symmetries of the regular icosahedron centred at the origin

0 2 R3 with orientation such that each coordinate axis passes

through the midpoint of an edge, thus coinciding with twofold

axes of the icosahedron. By definition, model sets arise from

so-called cut and project schemes [see Baake & Moody (2000)

and Moody (2000) for general background material, and

Baake (2002) for a gentle introduction]. In the case of Eucli-

dean internal spaces, these are commutative diagrams of the
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following form, where � and �int denote the canonical

projections; cf. Moody (2000).

Rd
 �
�

Rd
	 Rm

�!
�int

Rm

[ [lattice [dense

L  !
1�1 eLL �! L?

ð1Þ

Here, ~LL is a lattice in Rd
	 Rm. Further, we assume that the

restriction �j ~LL is injective and that the image �intð
~LLÞ is a

dense subset of Rm. Letting L :¼ �ð ~LLÞ, the bijectivity of the

(co-)restriction �jL~LL allows us to define a map :? : L! Rm by

�? :¼ �intðð�j
L
~LL
Þ
�1
ð�ÞÞ. Then, one has L? ¼ �intð

~LLÞ and,

further, ~LL ¼ fðl; l?Þ j l 2 Lg.

Definition 3.1. Given a subset W � Rm with ; 6¼

intðWÞ � W � clðintðWÞÞ and clðintðWÞÞ compact, a so-called

window, and any t 2 Rd, we obtain a model set

�ðt;WÞ :¼ t þ�ðWÞ

relative to the above cut and project scheme [equation (1)] by

setting

�ðWÞ :¼ f� 2 L j �? 2 Wg:

Moreover, Rd (respectively Rm) is called the physical

(respectively internal) space. The map :? : L! Rm, as defined

above, is called the star map of �ðt;WÞ, W is referred to as the

window of �ðt;WÞ and L is called the underlying Z-module of

�ðt;WÞ. The model set �ðt;WÞ is called generic if it satisfies

bdðWÞ \ L? ¼ ;. Moreover, it is called regular if the boundary

bdðWÞ has Lebesgue measure 0 in Rm.

We refer the reader to Moody (2000) for details and general

properties of model sets, and to Baake & Moody (2000) for

general background. In the following, we assume that the

reader is acquainted with the basic terminology of model sets

as presented in Moody (2000). Clearly, every translate of a

window is again a window. From now on, L will always denote

one of the icosahedral modules above.

Definition 3.2. Icosahedral model sets �L
icoðt;WÞ with under-

lying Z-module L arise from the cut and project scheme

[equation (1)] by choosing the star map :? : L! R3 to be the

Q-linear monomorphism of Abelian groups that is given by

applying the Galois conjugation :0 coordinatewise. We further

denote by IL
g the set of generic icosahedral model sets with

underlying Z-module L. Additionally, for a window W � R3,

we set

I
L
g ðWÞ :¼ f�L

icoðt; sþWÞ j t; s 2 R3
g \ I

L
g :

We refer the reader to Moody (2000) and Pleasants (2000)

for details and related general settings. Both in the B-type and

the F-type case, we shall denote by :�? the inverse of the co-

restriction of the corresponding star map :? : L! L? to its

image. The images of both mapse:: : L! R3
	 R3, defined by

� 7! ð�; �?Þ, are indeed lattices in R3
	 R3. In fact, the

terminology originates from the fact that these images have a

natural interpretation as a body-centred lattice in 6-space (a

weight lattice of type D
6) in the B-type case and as a face-

centred lattice in 6-space (a root lattice of type D6) in the

F-type case; see Chen et al. (1998) and Conway & Sloane

(1999) for background. Finally, one can easily verify that, in

any case, the image L? is a dense subset of R3.

Remark 3.3. Let � be an icosahedral model set with under-

lying Z-module L and window W. Then � is an aperiodic

Meyer set. In particular, it is an aperiodic Delone set of finite

local complexity. Moreover, if � is regular, then � is pure

point diffractive, i.e. the Fourier transform of the auto-

correlation density that arises by placing a delta peak (point

mass) on each point of � looks purely point-like; cf. Schlott-

mann (2000). If � is both generic and regular, and if a suitable

translate of the window W has the full icosahedral symmetry

of L?, then � also has this icosahedral symmetry in the sense

of symmetries of LI-classes, meaning that a discrete structure

has a certain symmetry if the original and the transformed

structure are locally indistinguishable (LI) (i.e. up to transla-

tion, every finite patch in � also appears in any of the other

elements of its LI-class and vice versa); see Baake (2002) for

details. Typical examples are balls and suitably oriented

versions of the icosahedron, the dodecahedron, the rhombic

triacontahedron (the latter also known as Kepler’s body) and

its dual, the icosidodecahedron.

Example 3.4. A generic regular B-type icosahedral model set

with full icosahedral symmetry Yh is given by �L
ico :¼

�L
icoð0; sþWÞ, where L is the body-centred icosahedral

module from above, s :¼ 10�3ð1; 1; 1Þ and W is the regular

icosahedron centred at the origin with orientation such that

ð�0; 0; 1Þ and ð��0; 0; 1Þ belong to its set of vertices; see Fig. 1

for an illustration.

From now on, we always let �5 :¼ e2�i=5, as a specific choice

of a primitive fifth root of unity in C. Occasionally, we identify

C with R2. It is well known that the fifth cyclotomic fieldQð�5Þ

is an algebraic number field of degree 4 overQ. Moreover, the

field extension Qð�5Þ=Q is a Galois extension with Abelian

Galois group GðQð�5Þ=QÞ ’ ðZ=5ZÞ	, where a ðmod 5Þ corre-

sponds to the automorphism given by �5 7! �a
5; cf. Theorem 2.5

of Washington (1997). Note that, restricted to the quadratic

field Qð�Þ, both the Galois automorphism of Qð�5Þ=Q that is

given by �5 7! �3
5 and its complex conjugate automorphism

(i.e. the automorphism given by �5 7! �2
5) induce the unique

nontrivial Galois automorphism :0 of Qð�Þ=Q (determined by

� 7! 1� �). Further, O5 :¼ Z½�5� is the ring of integers in

Qð�5Þ; cf. Theorem 2.6 of Washington (1997). The ring O5 also

is a Z½��-module of rank two, i.e. one has O5 ¼ Z½�� � Z½���5;

cf. Lemma 1(a) of Baake, Gritzmann, Huck et al. (2006). Since

�3
5 is another primitive fifth root of unity in C, one also has

O5 ¼ Z½�� � Z½���
3
5. Note that both nontrivial Galois auto-

morphisms of Qð�5Þ=Q mentioned above map O5 into itself.

Definition 3.5. Cyclotomic model sets �5
cycðt;WÞ with under-

lying Z-module O5 arise from the cut and project scheme

[equation (1)] by choosing the star map :?5 : O5 ! R2 to be
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either the nontrivial Galois automorphism ofQð�5Þ=Q, defined

by �5 7! �3
5, or its complex conjugate automorphism.

We refer the reader to Baake, Gritzmann, Huck et al. (2006)

for a proof that this definition leads indeed to a cut and project

scheme.

Example 3.6. For illustrations of cyclotomic model sets with

underlying Z-module O5, see Fig. 2(a) and Fig. 3; cf. Propo-

sition 3.11 and Example 3.12 below.

We shall now demonstrate that icosahedral model sets �
can be sliced into cyclotomic model sets with underlying

Z-module O5, where the slices are intersections of � with

translates of the hyperplane H :¼ ð�; 0; 1Þ? and are thus

orthogonal to a fivefold axis of the icosahedral symmetry of L.

We further set H0 :¼ ð�0; 0; 1Þ?. The following result is

immediate.

Lemma 3.7. The following equations hold:

(a) L \H ¼ Z½��ð0; 1; 0Þ � Z½�� 12 ð�1;��0; �Þ;
(b) ðL \HÞ

?
¼ L? \H0.

Definition 3.8. We denote by � the R-linear isomorphism

�: H ! C, determined by ð0; 1; 0Þ 7! 1 and
1
2 ð�1;��0; �Þ 7! �5. Further, �? will denote the R-linear

isomorphism �? : H0 ! C, determined by ð0; 1; 0Þ 7! 1 and
1
2 ð�1;��; �0Þ 7! �3

5.

Lemma 3.9. The maps � and �? are isometries of Euclidean

vector spaces, where H, H 0 and C are regarded as two-

dimensional Euclidean vector spaces in the canonical way.

Moreover, identifying C with the xy plane in R3, � and �?

extend uniquely to direct rigid motions of R3, i.e. elements of

the group SOð3;RÞ.

Proof. The first assertion follows from the following identities:

rð0; 1; 0Þ þ s 1
2 ð�1;��0; �Þ

ww ww ¼ jrþ s �5j ¼ ðr
2
þ s2
� rs�0Þ1=2;

rð0; 1; 0Þ þ s 1
2 ð�1;��; �0Þ

ww ww ¼ jrþ s �3
5j ¼ ðr

2
þ s2
� rs�Þ1=2:

The additional statement is immediate.

Lemma 3.10. Via restriction, the maps � and �? induce

isomorphisms of rank-two Z½��-modules:

L \H �!
�
O5  �

�?

L? \H 0:

Proof. This follows from the definition of � and �? together

with Lemma 3.7.

Proposition 3.11. Let � be a generic icosahedral model set

with underlying Z-module L, say � ¼ �L
icoðt;WÞ. Then, for

every � 2 �, one has the identity

�ðð� \ ð�þHÞÞ � �Þ ¼ fz 2 O5 j z
?5 2 W�g;

where :?5 is the Galois automorphism of Qð�5Þ=Q, defined by

�5 7! �3
5, and

W� :¼ �?
�
ðW \ ðð�� tÞ

?
þH 0ÞÞ � ð�� tÞ

?� :
Thus, the sets of the form

�
�
ð� \ ð�þHÞÞ � �

�
;

where � 2 �, are cyclotomic model sets with underlying

Z-module O5.
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Figure 1
(a) A few slices of a patch of the icosahedral model set �L

ico and (b) their
:?-images inside the icosahedral window in the internal space, both seen
from the positive x axis.



Proof. First, consider �ð�Þ, where � 2 ð� \ ð�þHÞÞ � �.

It follows that � 2 L \H and ð�þ ð�� tÞÞ? ¼

�? þ ð�� tÞ
?
2 W. Using Lemmas 3.7 and 3.10, one can now

verify that

�ð�Þ?5 ¼ �?
ð�?Þ 2 W�:

Conversely, suppose that z 2 O5 satisfies z?5 2 W�. Since

z?5 2 O5, Lemmas 3.9 and 3.10 show that there is a unique

� 2 L? \H0 with z?5 ¼ �?ð�Þ and �þ ð�� tÞ
?
2 W. One can

now verify that ��? 2 ð� \ ð�þHÞÞ � � and �ð��?Þ ¼ z.

This proves the claimed identity. The assertion follows.

Example 3.12. For an illustration of the content of Proposition

3.11 in the case of the icosahedral model set �L
ico from

Example 3.4, see Figs. 2 and 3.

We shall now establish a relation between icosahedral

model sets and their underlying Z-modules. We denote by m�

the Z½��-module endomorphism of Qð�Þ3, given by multi-

plication by �, i.e. � 7! ��. Furthermore, we denote by m�
? the

Z½��-module endomorphism of ðQð�Þ3Þ?, given by �? 7! ð��Þ?.

Lemma 3.13. The map m�
? is contractive with contraction

constant 1=� 2 ð0; 1Þ, i.e. the equality m�
?ð�?Þ

ww ww ¼
ð1=�Þ �?

ww ww holds for all � 2 Qð�Þ3.
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Figure 2
(a) The central slice of the patch of �L

ico from Fig. 1 and (b) its :?-image
inside the (marked) decagon ðsþWÞ \H 0. Views (a) and (b) are seen
from perpendicular viewpoints.

Figure 3
Another two slices of the patch of �L

ico from Fig. 1. Views (a) and (b) are
seen from perpendicular viewpoints.



Proof. For � 2 Qð�Þ3, observe that m�
?ð�?Þ

ww ww ¼
ð��Þ?

ww ww ¼ �0�?
ww ww ¼ ð1=�Þ �?

ww ww.

Lemma 3.14. Let � be an icosahedral model set with under-

lying Z-module L, say � ¼ �L
icoðt;WÞ. Then, for any

F 2 FðLÞ, there is a homothety h : R3
! R3 such that

hðFÞ � �.

Proof. From intðWÞ 6¼ ; and the denseness of L? in R3, one

gets the existence of a suitable �0 2 L with �0
? 2 intðWÞ.

Consider the open neighbourhood V :¼ intðWÞ � �0
? of 0 in

R3. Since the map m�
? is contractive by Lemma 3.13 (in the

sense which was made precise in that lemma), the existence of

a suitable k 2 N is implied such that ðm�
?Þ

k
ðF?Þ � V. Hence,

one has fð�k�þ �0Þ
?
j � 2 Fg � intðWÞ � W and, further,

hðFÞ � �, where h : R3
! R3 is the homothety given by

x 7! �kxþ ð�0 þ tÞ.

As an easy application of Lemma 3.14, one obtains the

following result on the set of �-directions for icosahedral

model sets �, which we shall use without further discussion.

Proposition 3.15. Let � be an icosahedral model set with

underlying Z-module L. Then, the set of �-directions is

precisely the set of L-directions.

Proof. Since one has ��� � L, every �-direction is an

L-direction. For the converse, let u 2 S2 be an L-direction, say

parallel to � 2 L n f0g. By Lemma 3.14, there is a homothety

h : R3
! R

3 such that hðf0; �gÞ � �. It follows that

hð�Þ � hð0Þ 2 ð���Þ n f0g. Since hð�Þ � hð0Þ is parallel to �,

the assertion follows.

By similar arguments to those above, one can show the

following relative of the last result.

Proposition 3.16. Let � be a cyclotomic model set with

underlying Z-module O5. Then, the set of �-directions is

precisely the set of O5-directions.

4. Complexity

In the practice of quantitative HRTEM, the determination of

the rotational orientation of a quasicrystalline probe in an

electron microscope can rather easily be achieved in the

diffraction mode. This is due to the icosahedral symmetry of

genuine icosahedral quasicrystals. However, the X-ray images

taken in the high-resolution mode do not allow us to locate the

examined sets. Therefore, as already pointed out in Baake,

Gritzmann, Huck et al. (2006), in order to prove practically

relevant and rigorous results, one has to deal with the non-

anchored case of the whole LI class LIð�Þ of a regular, generic

icosahedral model set �, rather than dealing with the

anchored case of a single fixed icosahedral model set �; recall

Remark 3.3 for the equivalence relation given by local indis-

tinguishability and see also Gritzmann & Langfeld (2008).

Remark 4.1. The LI class of a lattice M in R3 simply consists of

all translates of M inR3. In particular, LIðMÞ simply consists of

one translation class. The entire LI class LIð�L
icoðt;WÞÞ of a

regular, generic icosahedral model set �L
icoðt;WÞ can be shown

to consist of all generic icosahedral model sets of the form

�L
icoðt; sþWÞ and all patterns obtained as limits of sequences

of generic icosahedral model sets of the form �L
icoðt; sþWÞ in

the local topology (LT). Here, two patterns are "-close if, after

a translation by a distance of at most ", they agree on a ball of

radius 1=" around the origin; see Baake (2002) and Schlott-

mann (2000). Each such limit is then a subset of some

�L
icoðt; sþWÞ, but s might not be in a generic position. Note

that the LI class LIð�Þ of an icosahedral model set � contains

uncountably many (more precisely, 2@0 ) translation classes; cf.

Baake (2002) and references therein.

In view of the complication described above, we must make

sure that we deal with finite subsets of generic icosahedral

model sets of the form �L
icoðt; sþWÞ, i.e. subsets whose :?-

image lies in the interior of the window. This restriction to the

generic case is the proper analogue of the restriction to

perfect lattices and their translates in the crystallographic

case. Analogous to the lattice case (Gardner & Gritzmann,

1999; Gardner et al., 1999) and the case of cyclotomic model

sets (Baake, Gritzmann, Huck et al., 2006), the main algo-

rithmic problems of the DT of icosahedral model sets are as

follows.

Definition 4.2. (Consistency, Reconstruction and Uniqueness

problems). Let W � R3 be a window, and let u1; . . . ; um 2 S
2

be m � 2 pairwise nonparallel L-directions. The corre-

sponding consistency, reconstruction and uniqueness

problems are defined as follows.

Consistency. Given functions puj
: L3

uj
! N0, j 2 f1; . . . ;mg,

whose supports are finite and satisfy suppðpuj
Þ � L

L
uj

, decide

whether there is a finite set F which is contained in an element

of IL
g ðWÞ and satisfies Xuj

F ¼ puj
, j 2 f1; . . . ;mg.

Reconstruction. Given functions puj
: L3

uj
! N0,

j 2 f1; . . . ;mg, whose supports are finite and satisfy

suppðpuj
Þ � L

L
uj

, decide whether there exists a finite subset F

of an element of IL
g ðWÞ that satisfies Xuj

F ¼ puj
,

j 2 f1; . . . ;mg, and, if so, construct one such F.

Uniqueness. Given a finite subset F of an element of IL
g ðWÞ,

decide whether there is a different finite set ~FF that is also a

subset of an element of IL
g ðWÞ and satisfies Xuj

F ¼ Xuj
~FF,

j 2 f1; . . . ;mg.

One has the following tractability result, which was proved

for the case of B-type icosahedral model sets by combining the

results from the last section with those presented in Baake,

Gritzmann, Huck et al. (2006); cf. Theorem 3.33 of Huck

(2007b) for the details. The proof for the F-type case is similar.

For the sake of brevity, we prefer to omit the straightforward

details here. Below, L-directions that lie in H will be called

LH-directions.

Theorem 4.3. When restricted to two LH-directions and

polyhedral windows, the problems Consistency, Recon-
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struction and Uniqueness as defined above can be solved in

polynomial time in the real RAM model of computation.

For a detailed analysis of the complexities of the above

algorithmic problems in the B-type case, we refer the reader to

ch. 3 of Huck (2007b). Note that even in the anchored planar

lattice case Z2 (and the Turing machine as the model of

computation) the corresponding problems Consistency,

Reconstruction and Uniqueness are NP-hard for three or

more Z2-directions (Gardner & Gritzmann, 1999; Gardner et

al., 1999). Therefore, it seems to be rather obvious that one

cannot expect a generalization of Theorem 4.3 to three or

more LH-directions.

5. Uniqueness

We start off with some uniqueness results which only deal with

the anchored case of determining finite subsets of a fixed

icosahedral model set � by X-rays in L-directions. The

following negative result follows from Proposition 3.1 of Huck

(2009).

Proposition 5.1. Let � be an icosahedral model set with

underlying Z-module L and let U � S2 be an arbitrary but

fixed finite set of pairwise nonparallel L-directions. Then

Fð�Þ is not determined by the X-rays in the directions of U.

The first positive result follows immediately from Fact 3.3 of

Huck (2009).

Proposition 5.2. Let � be an icosahedral model set with

underlying Z-module L. Further, let U � S2 be any set of

kþ 1 pairwise nonparallel L-directions, where k 2 N0. Then,

F�kð�Þ is determined by the X-rays in the directions of U.

Moreover, for all F 2 F�kð�Þ, one has GF
U ¼ F.

Since icosahedral model sets have finite local complexity,

the following result is a direct consequence of Proposition 3.5

of Huck (2009); cf. Remark 3.3.

Proposition 5.3. Let � be an icosahedral model set with

underlying Z-module L and let r> 0. Then there is a set U of

two nonparallel L-directions such that the set of subsets of

patches of radius r of � are determined by the X-rays in the

directions of U. Moreover, there is a set U of three pairwise

nonparallel L-directions such that, for all subsets F of patches

of radius r of �, one has GF
U ¼ F.

Note that, although looking promising at first sight, neither

of the last two results can comply with the restriction to few

high-density directions mentioned earlier. The following result

follows immediately from Theorem 2.54 of Huck (2007b); see

also Theorem 15 of Huck (2007a).

Theorem 5.4. The following assertions hold:

(a) There is a set U � S1 of four pairwise nonparallel

O5-directions such that, for all cyclotomic model sets � with

underlying Z-module O5, the set Cð�Þ is determined by the

X-rays in the directions of U.

(b) For all cyclotomic model sets � with underlying

Z-module O5 and all sets U � S1 of three or fewer pairwise

nonparallel O5-directions, the set Cð�Þ is not determined by

the X-rays in the directions of U.

In fact, for a cyclotomic model set � with underlying

Z-module O5, the set Cð�Þ is determined by the X-rays in the

directions of any set U of four pairwise nonparallel

O5-directions having the property that there is no U-polygon

in �; cf. Lemma 1.83 and Theorem 2.29 of Huck (2007b) or

Theorem 14 of Huck (2007a). Here, a U-polygon in � is a

nondegenerate convex polygon P with all its vertices in � such

that any line inR2 that is parallel to a direction of U and passes

through a vertex of P also meets another vertex of P.

Example 5.5. The convex subsets of cyclotomic model sets with

underlying Z-module O5 are determined by the X-rays in the

set U5 of O5-directions parallel to the elements of the set

fð1þ �Þ þ �5, ð� � 1Þ þ �5,�� þ �5; 2� � �5g; cf, Theorem 2.56

and Example 2.57 of Huck (2007b) [see also Theorem 16 and

Example 3 of Huck (2007a)].

Before we can present the first uniqueness result of this text

that can comply with the restriction to few high-density

directions, we need to observe the following property.

Lemma 5.6. Let U � S2 be a finite set of LH-directions, and let

F; ~FF 2 Fðt þHÞ, where t 2 R3. If F and ~FF have the same

X-rays in the directions of U, then �ðF � tÞ and �ð ~FF � tÞ have

the same X-rays in the directions of �ðUÞ � S1.

Remark 5.7. By Lemmas 3.9 and 3.10, the set of LH-directions

maps under � bijectively onto the set of O5-directions. Note

also that, for a convex subset C of an icosahedral model set �
and an element � 2 �, the intersection C \ ð�þHÞ is a

convex subset of the slice � \ ð�þHÞ of �.

Hence, �ððC \ ð�þHÞÞ � �Þ is a convex subset of

�ðð� \ ð�þHÞÞ � �Þ.

By applying Theorem 5.4 to the various images

�ðð� \ ð�þHÞÞ � �Þ, where � is an icosahedral model set

and � 2 �, the proof of the following result now follows from

Proposition 3.11, Lemma 5.6 and Remark 5.7.

Theorem 5.8. The following assertions hold:

(a) There is a set U � S2 of four pairwise nonparallel LH-

directions such that, for all generic icosahedral model sets �
with underlying Z-module L, the set Cð�Þ is determined by the

X-rays in the directions of U.

(b) For all generic icosahedral model sets � with underlying

Z-module L and all sets U � S2 of three or fewer pairwise

nonparallel LH-directions, the set Cð�Þ is not determined by

the X-rays in the directions of U.

An analysis of the proof of Theorem 5.8 shows that the

result extends to the set of subsets C of generic icosahedral

model sets � that are only H-convex, the latter meaning that,

for all � 2 �, the sets C \ ð�þHÞ are convex subsets of the

slices � \ ð�þHÞ.

research papers

246 Christian Huck � Discrete tomography of icosahedral model sets Acta Cryst. (2009). A65, 240–248



Example 5.9. By virtue of Example 5.5, we see that the convex

subsets of generic icosahedral model sets � with underlying

Z-module L are determined by the X-rays in the LH-directions

of the set Uico :¼ ��1ðU5Þ.

Remark 5.10. By the results of Pleasants (2003), the directions

that are determined by Uico are likely to yield dense lines in

icosahedral model sets. It follows that, in the practice of

quantitative HRTEM, the resolution coming from these

directions is likely to be rather high.

Finally, we wish to demonstrate that, in an approximate

sense, part (a) of Theorem 5.8 even holds in the non-anchored

case for regular generic icosahedral model sets. Before this, we

need a consequence of Weyl’s theory of uniform distribution;

cf. Weyl (1916). This analytical property of regular icosahedral

model sets was analysed in general by Schlottmann (1998,

2000) and Moody (2002). We need the following variant which

relates the centroids of images of certain finite subsets of a

regular icosahedral model set � under the star map to the

centroid of its window.

Lemma 5.11. Let � be a regular icosahedral model set of the

form � ¼ �L
icoð0;WÞ. Then, for all a 2 R3, one has the identity

lim
r!1

1

cardð� \ BrðaÞÞ

X
�2�\BrðaÞ

�? ¼
1

volðWÞ

Z
W

y d�ðyÞ;

where � denotes the Lebesgue measure on R3.

Proof. This is a consequence of the uniform distribution of the

points of �? in the window, which gives the integral by Weyl’s

lemma. The proof of the uniform distribution property for

model sets can be found in Schlottmann (1998) and Moody

(2000, 2002).

We are now able to demonstrate that, in an approximate

(and weak) sense to be clarified below, for any fixed window

W � R3 whose boundary bdðWÞ has Lebesgue measure 0 in

R3, the set [�2IL
g ðWÞ
Cð�Þ is determined by the X-rays in the

LH-directions of Uico defined in Example 5.9. Let

F; ~FF 2
[

�2IL
g ðWÞ

Cð�Þ;

say F 2 Cð�L
icoðt; sþWÞÞ and ~FF 2 Cð�L

icoð ~tt; ~ssþWÞÞ, where

t; ~tt; s; ~ss 2 R3, and suppose that F and ~FF have the same X-rays

in the directions of Uico. If F ¼ ;, then, by Lemma 2.2(a), one

also gets ~FF ¼ ;. One may thus assume, without loss of

generality, that F and ~FF are non-empty. Hence, there is an

element � 2 F such that F \ ð�þHÞ and ~FF \ ð�þHÞ are

non-empty finite sets with the same X-rays in the directions of

Uico. Then, by Lemma 5.6, the non-empty finite subset

�ððF \ ð�þHÞÞ � �Þ of O5 (cf. Lemma 3.10) and the non-

empty finite subset �ðð ~FF \ ð�þHÞÞ � �Þ of C have the same

X-rays in theO5-directions of �ðUicoÞ ¼ U5. Using Lemma 2.4

in conjunction with Theorem 1.130 of Huck (2007b) [see also

Theorem 12 of Huck (2007a)], one obtains

�ððF \ ð�þHÞÞ � �Þ;�ðð ~FF \ ð�þHÞÞ � �Þ

� G
�ððF\ð�þHÞÞ��Þ
U5

� O5:

Thus, one gets

F \ ð�þHÞ; ~FF \ ð�þHÞ � t þ L: ð2Þ

Since ~FF \ ð�þHÞ � ~tt þ L, equation (2) implies that t þ L

meets ~tt þ L, the latter being equivalent to the identity

t þ L ¼ ~tt þ L. Note also that the identity t þ L ¼ ~tt þ L is

equivalent to the relation ~tt � t 2 L. Trivially, one has

F � t 2 Cð�L
icoð0; sþWÞÞ:

One further obtains that

~FF � t 2 Cð�L
icoð ~tt � t; ~ssþWÞÞ ¼ Cð�L

icoð0; ð~ssþ ð ~tt � tÞ
?
Þ þWÞÞ:

Clearly, F � t and ~FF � t again have the same X-rays in the

directions of Uico. Hence, by Lemma 2.2(b), F � t and ~FF � t

have the same centroid. Since the star map :? is Q-linear, it

follows that the finite subsets ðF � tÞ
? and ð ~FF � tÞ

? of R3 also

have the same centroid. Now, if one has

F � t ¼ BrðaÞ \�L
icoð0; sþWÞ

and

~FF � t ¼ B~rrð~aaÞ \�L
icoð0; ð~ssþ ð ~tt � tÞ

?
Þ þWÞ

for suitable a; ~aa 2 R3 and large r; ~rr> 0 (which is rather natural

in practice), then Lemma 5.11 allows us to write

½1=volðWÞ�
R

sþW

y d�ðyÞ � ½1=cardðF � tÞ�
P

x2F�t

x?

¼ ½1=cardð ~FF � tÞ�
P

x2 ~FF�t

x?

� ½1=volðWÞ�
R

ð~ssþð~tt�tÞ?ÞþW

y d�ðyÞ:

Consequently,

sþ
R
W

y d�ðyÞ � ð~ssþ ð ~tt � tÞ
?
Þ þ

R
W

y d�ðyÞ;

and hence s � ~ssþ ð ~tt � tÞ?. The latter means that, approxi-

mately, both F � t and ~FF � t are elements of the set

Cð�L
icoð0; sþWÞÞ. Now, it follows in this approximate sense

from Example 5.9 that F � t � ~FF � t, and, finally, F � ~FF.

6. Outlook

For a more extensive account of both uniqueness and

computational complexity results in the DT of Delone sets

with long-range order, we refer the reader to Huck (2007b).

This reference also contains results on the interactive concept

of successive determination of finite sets by X-rays and further

extensions of settings and results that are beyond our scope

here; see also Huck (2007a). Although the results of this text

and of Huck (2007b) give satisfying answers to the basic

problems of the DT of icosahedral model sets, they represent

only a very first step towards a tool that is as satisfactory for

application in materials science as is computerized tomo-

graphy in its medical or other applications. It would be

interesting to have experimental tests in order to see how well
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the above results work in practice. In fact, the group of K.

Saitoh (Nagoya, Japan) is working on a practical realization.

Since there is always some noise involved when physical

measurements are taken, the latter also requires the ability to

work with imprecise data. For this, it is necessary to study

stability and instability in the DT of icosahedral model sets in

the future; cf. Alpers & Gritzmann (2006).
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